Universidad Agrícola Panamericana El Zamorano, Honduras

Control de la broca del café *Hypothenemus hampei* utilizando dos nemátodos entomopatógenos, *Beauveria bassiana* y el insecticida Clorpirifos durante la maduración del grano.

Presentado por : Miguel Cocom Agradecimiento a : Adrian Bauer

Laboratorio de Control Biológico de Zamorano

Lab. Control Biológico: Investigación y Desarrollo

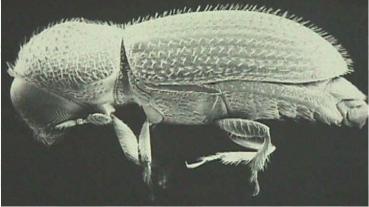
Producción de: Hongos, nematodos y bacterias entomopatogenos.
Parasitoides, Baculovirus, insectos y ácaros depredadores.

 Alternativas al control de plagas

- Cultivo agrícola de mayor consumo a nivel mundial,
 7.7 millones de toneladas, extensión de 10.5 millones/ha.
- Mayor productor Brasil con 2.9 millones de toneladas métricas/año (FAOSTAT, 2013)

Mayor problema entomológico es la Broca de café.

Broca del café, Hypothenemus hampei



Broca del café

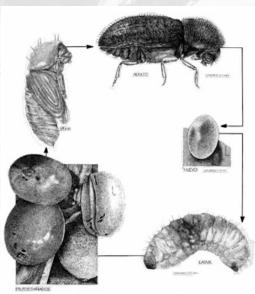
- Insecto capaz de penetrar los frutos de café y causar pérdidas de hasta el 50% de la producción. (eje: Brasileño)
- Afecta las cualidades físicas y organolépticas del grano, dañando la inocuidad de la bebida por la presencia de ocratoxinas (Camilo et al. 2003).
- Con un 25% de granos perforados, daño mayor al 30% = perfil de taza con aroma y sabor nauseabundos, contaminado y carbonoso; acidez acre o nula, amargo muy fuerte y cuerpo pesado. (Montoya 1999).

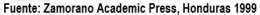
Hypothenemus hampei

 Endémica de Uganda, África. Ingresó América por Brasil (1913).

· Parásito obligado del género Coffea.

 Provoca las principales pérdidas por peso, caída del fruto y efecto negativo en perfil de taza.





Ciclo de vida de la broca

- Metamorfosis completa de 45-60 días.
- Relación 1 macho: 10 hembras
- Partenogenética.
- · Áreas con sombra y alta humedad relativa.

Prohibición de Endosulfán

- El Programa de las Naciones Unidas para el Medio Ambiente (PNUMA) prohibió su uso en el Convenio de Estocolmo 2011.
- Alternativas amigables al medio ambiente promueven la investigación.
- Actualmente, en Centro América se emplea el uso de la molécula organofosforada Clorpirifos.

Clorpirifos

- Molécula no sistémica con actividad por ingestión, inhalación y contacto del insecto.
- Amplio espectro y largo efecto residual.
- Etiqueta amarilla.
- Inhibición de la enzima acetilcolinesterasa.

Beauveria bassiana

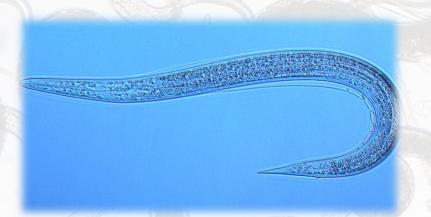
- Hongo entomopatógeno, presente en la gran mayoría de los ecosistemas.
- Ampliamente recomendado para el manejo integrado de broca. (Tellez 2009, Bustillo 2004 y Anacafe 2003)
- Esporas se adhieren a la cutícula del insecto y germinan sobre el tegumento.

Nematodos Entomopatogenos

- Juvenil Infectivo.
- Atraídos por el CO₂.
- Penetran el insecto a través de la boca, ano o espiráculos.

Heterorhabditis bacteriophora

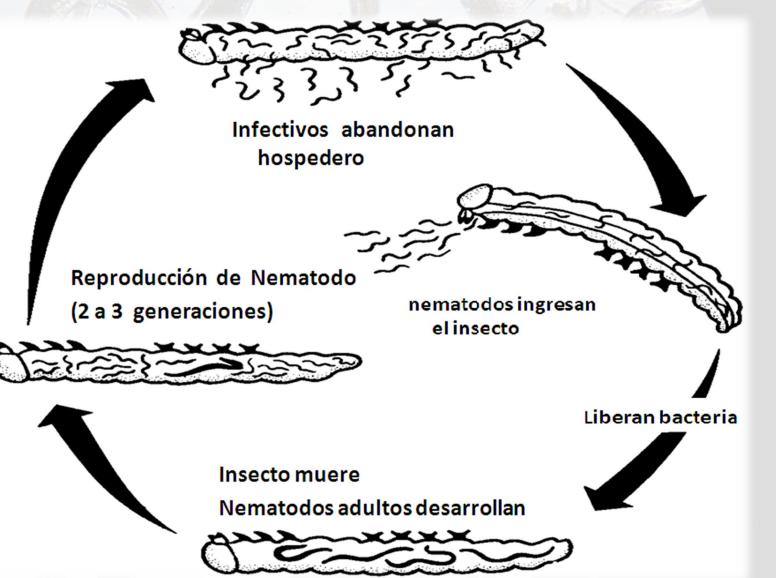
- Nematodo ambulante, movimiento agresivo y buena agilidad. Persistencia de 2-3 meses en campo. (Lara et al. 2004)
- Diente en la parte anterior del intestino, permite penetrar membranas intersegmentales.
- Simbiosis con bacteria Photorhabdus luminescens.





Steinernema carpocapse

- Comportamiento de emboscada y capacidad de saltar para adherirse al insecto cuando esté cerca.
- Persistencia de hasta 5-6 meses en campo (Lara et al. 2004).
- Simbiosis con bacteria *Xenorhabdus* nematophila.



Modo de acción

Objetivos

Determinar el enemigo natural más efectivo para el control de adultos de *Hypothenemus hampei* cuando se encuentra en búsqueda activa de fruto, 107-137 días después de floración.

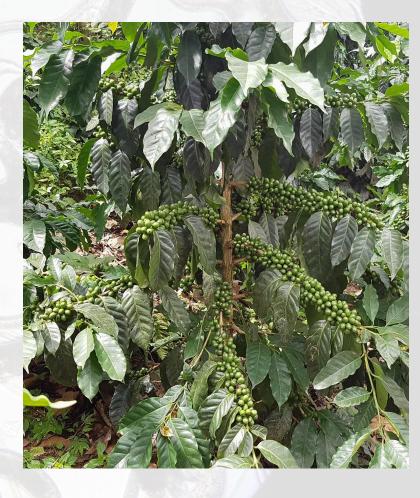
Objetivos

Comparar los 3 enemigos naturales con el referente químico Clorpirifos y determinar cuál es más eficaz en el control de adultos de *Hypothenemus hampei*, 107-137 días después de floración.

Evaluar comportamiento de *Hypothenemus* hampei al ser parasitada por entomonematodos *Heterorhabditis* bacteriophora y Steinernema carpocapsae.

Localización

Finca El Brasil, El Paraíso, Honduras.


1200 msnm, 18-26°C, 1500 mm, HR de 82% /año

Variedad de café: Catuai

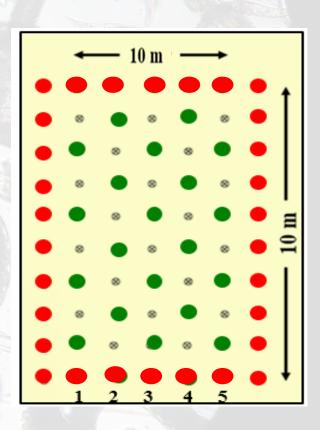
 Duración de 107-137 días después de floración.

Tratamientos

Cuadro 1. Productos nombrados con la dosis aplicada por hectárea. Se incluyó el ingrediente de control. Tratamientos aplicados en la Hacienda El Brasil, El Paraíso, Honduras, 2016

Producto	Dosis utilizada	Ingrediente
BAZAM	240 g/ha	Beauveria bassiana
NEMAPOWER HB	4X10 ⁸ nematodos/ha	Heterorhabditis bacteriophora
NEMAPOWER SC	4X10 ⁸ nematodos/ha	Steinernema carpocapsae
BRUSKO 48 EC	1.75 L /ha	Clorpirifos (840 g i.a./ha) Ω
Testigo		

 Ω Ingrediente activo (i.a.) fosforotioato de -dietilo y de -3,5,6-tricloro-2-piridilo



Diseño Experimental

- Se utilizó un diseño de Bloques Completos al Azar (BCA)
- Bloques de cinco tratamientos
- Cuatro repeticiones, 20 unidades experimentales
- Unidades experimentales de 10 x 10 metros

Muestreo Incidencia de Broca

Cinco cafetos por UE tomando 4 bandolas por cafeto, al azar, en la zona baja y tercio medio.

Incidencia por Unidad Experimental

%Incidencia = $\left(\Sigma \frac{Granos\ brocados\ por\ bandola}{Granos\ totales\ por\ bandola}N\right)*100$

Dónde: N= Cantidad de cafetos muestreadas por UE (5)

Aplicación

• Dos aplicaciones realizadas a los 107 y 130 días después de floración respectivamente.

 Asperjadora de motor modelo Arimitsu SD 253 con boquillas dobles para aplicaciones uniformes.

 Focalizada a las bandolas del cafeto con adherente BreakThru©.

Muestreo Post-Aplicación

Cinco plantas al azar.

 10 granos brocados por planta ubicada entre la zona baja y el tercio medio.

50 granos brocados por UE llevados en bolsas papel manila.

Muestreo Post-Aplicación

- Se disectaron los frutos para contar las brocas muertas, vivas y granos evacuados (sin presencia de broca).
- Comprobación de parasitismo de enemigos naturales.

Variables Medidas

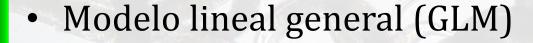
%Brocas Muertas =
$$\frac{X}{50} \times 100$$

%Brocas Evacuadas =
$$\frac{Y}{50} \times 100$$

%Brocas Vivas =
$$\frac{Z}{50} \times 100$$

Dónde:

X= Brocas Muertas


Y= Brocas Evacuadas

Z= Brocas Vivas

Análisis estadístico

Análisis de varianza (ANDEVA)

• Separación de medias DUNCAN (P ≤ 0.05)

 Paquete estadístico Statistical Analysis System (SAS® 9.4)

Evaluación In Vitro

- Se recolectaron 180 granos brocados libres de aplicación a los 130 D.D.F.
- Se inocularon los nemátodos Heterorhabditis bacteriophora y Steinernema carpocapse haciendo una inmersión en 10 ml de agua con concentración de 2 × 10³ nematodos juveniles por ml (2 minutos).
- 4 repeticiones por tratamiento 15 frutos por plato petri.
- Se comparó con un testigo.

RESULTADOS Y DISCUSIÓN

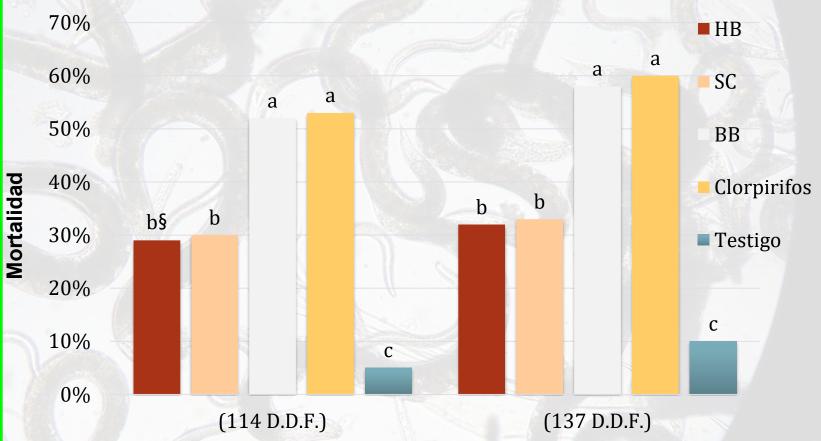


Figura 1. Porcentaje de mortalidad de adultos de broca a los 114 y 137 días después de floración. Hacienda El Brasil, El Paraíso, Honduras, 2016.

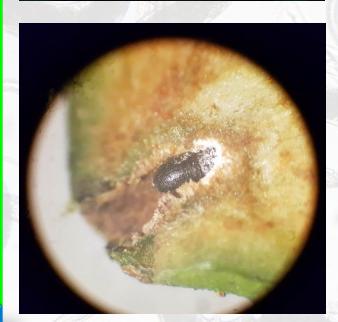
Muestreos Post-aplicación

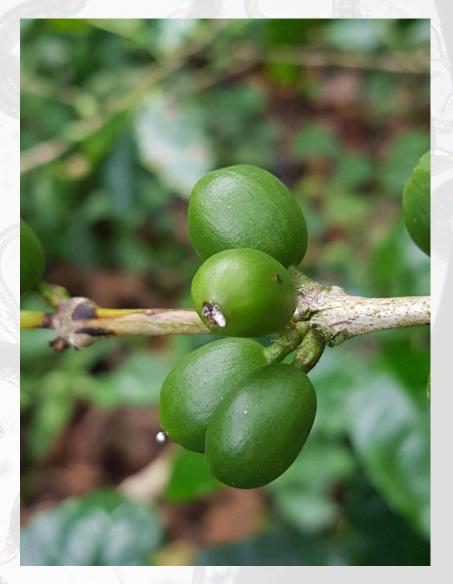
§ Medias con diferente letra en cada columna son estadísticamente diferentes (P \leq 0.05) con prueba Duncan.

HB = Heterorhabditis bacteriophora

SC = Steinernema carpocapse

BB = Beauveria bassiana


D.D.F.= Días después de floración


(Ávila 2010)

Beauveria bassiana

Nematodos Entomopatogenos

Heterorhabditis bacteriophora

Steinernema carpocapsae

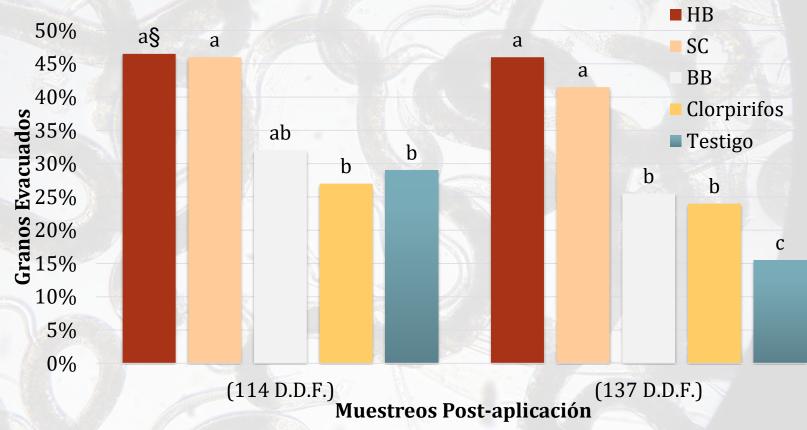


Figura 2. Porcentaje de granos evacuados de broca a los 114 y 137 días después de floración. Hacienda El Brasil, El Paraíso, Honduras, 2016.

§ Medias con diferente letra en cada columna son estadísticamente diferentes ($P \le 0.05$) con prueba Duncan

 ${\it HB} = Heterorhabditis\ bacteriophora$

SC = Steinernema carpocapse

BB = Beauveria bassiana

D.D.F.= Días después de floración

Cuadro 2. Evaluación in vitro del comportamiento de broca parasitada por *Heterorhabditis bacteriophora y Steinernema carpocapse.* Analizado 7 días después de inoculación en el Laboratorio de Control Biológico Zamorano, Honduras, 2016.

	%	
Tratamiento	Muertas	Muertas Afuera
Heterorhabditis bacteriophora	87 a§	33 a
Steinernema carpocapsae	87 a	27 a
Testigo	0 b	0 b
Pr>F	< 0.0001	<0.0001
C.V.	11.5	31.9
R^2	0.99	0.91

§ Medias con diferente letra en cada columna son estadísticamente diferentes ($P \le 0.05$) con prueba Duncan.

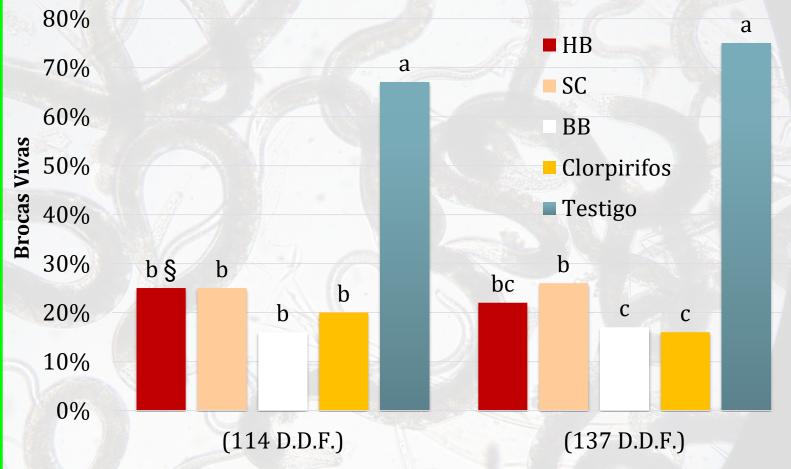


Figura 3. Porcentaje de brocas vivas en estado adulto a los 114 y 137 días después de floración. Hacienda El Brasil, El Paraíso, Honduras, 2016.

Muestreos Post-aplicación

§ Medias con diferente letra en cada columna son estadísticamente diferentes ($P \le 0.05$) con prueba Duncan.

Conclusiones

- El enemigo natural con mayor mortalidad para el control de la broca del cafeto *Hypothenemus hampei* es el hongo entomopatógeno *Beauveria bassiana* sin tener diferencias significativas con la molécula organofosforada Clorpirifos.
- No existen diferencias significativas en la capacidad de control de los entomonematodos *H. bacteriophora* y *S. carpocapse* a pesar de sus características y comportamientos distintos.
- El insecticida destacó la mortalidad más alta, sin embargo, no existen diferencias significativas con *Beauveria bassiana*.
- Hypothenemus hampei presenta un comportamiento evasivo al ser parasitado por entomonematodos Heterorhabditis bacteriophora y Steinernema carpocapse.

